
André Pang

ozone@algorithm.com.au

June 25, 2004

Beyond C, C++, Python and
Perl

2

README

This is not a language advocacy talk:
Every language has (dis)advantages
Use what’s best for the task-at-hand
Multi-language approach?

This is an awareness talk:
… on programming language research
Not necessarily implying to use this in production
High-level introduction, not low-level implementation details

3

README

Don’t hear things I’m not saying!
I discussed the typing system in Standard ML … Part way
through the explanation, one of the audience members
raised his hand and asked “But what's wrong with the way
Perl does it?” — Mark Jason-Dominus

4

Strong vs Weak Typing

Strong vs weak:
How easy/necessary is it to violate the type system?
Weak type systems = easy to violate, or require it as part of
typical programming:
void callback_function (void *data) {
 my_type *data = (my_type *) data;
}

Strong typing is always better:
Strongly typed languages don’t allow things to ‘go wrong’
(no segfaults, no out-of-bounds errors, no buffer overflows)
Some strongly typed languages are mathematically proven
(Haskell 98, Standard ML)

5

Static vs Dynamic Typing

Static typing:
Very (very very) often confused with strong typing
Type constraints are checked at compile-time

Dynamic typing:
Type constraints are checked at run-time
Tag every value with its type
Language’s RTS (run-time system) checks tags are valid

6

Type Systems

DynamicStatic

Strong

Weak

Haskell
Java

Python
Ruby

C
C++

Perl?

Perl?

Perl?

Perl?
Perl?

7

Java: Welcome to the 60s
C, C++, Java uses static typing

C, Java’s static typing sucks (C++ discussed soon)
Java forces you to do this:
Integer i = new Integer (69);
Vector v = new Vector ();
v.add(i); /* insert i into the vector named v */
…
Integer j = (Integer) v.get(0); /* get back i */
System.out.println (j.intValue() + 1);

Java forces you to downcast the retrieved object to do
anything useful with it
C is even worse: cast is unsafe (weakly typed), ala callback
example earlier

8

More Than a Syntax Problem
You can get run-time errors:

C: segfault, or even worse, no segfault :-)
Java: ClassCastException

Dynamic type checking solution:
Python/Ruby use ‘duck typing’ (quacks like a duck, walks
like a duck ⇒ is a duck)
Pros: less syntax clutter
Cons: still get run-time errors

Dynamic typing advocates say …
Type systems restrict how I program
Type system verification replaced by better testing
Why the hell do I need these stupid type systems?

9

More Than a Syntax Problem
You can get run-time errors:

C: segfault, or even worse, no segfault :-)
Java: ClassCastException

Dynamic type checking solution:
Python/Ruby use ‘duck typing’ (quacks like a duck, walks
like a duck ⇒ is a duck)
Pros: less syntax clutter
Cons: still get run-time errors

Dynamic typing advocates say …
Type systems restrict how I program
Type system verification replaced by better testing
Why the hell do I need these stupid type systems?

10

Parameterised Types

Static typing: use parameterised types, a.k.a. …
Parameterised types in Haskell/ML
data List a = Cons a | Nil

Templates in C++
Generics in Java/C#

Benefit?
Correctness proved at compile-time by type system
Run-time error is not possible

11

Perl Poetry
#!/usr/bin/perl

APPEAL:

listen (please, please);

 open yourself, wide;
 join (you, me),
 connect (us,together),

tell me.

do something if distressed;

 @dawn, dance;
 @evening, sing;
 read (books,$poems,stories) until peaceful;
 study if able;

 write me if-you-please;

sort your feelings, reset goals,
seek (friends, family, anyone);

 do*not*die (like this)
 if sin abounds;

keys (hidden), open (locks, doors), tell secrets;
 do not I-beg-you, close them, yet.

 accept (yourself, changes),
 bind (grief, despair);

 require truth, goodness if-you-will, each
moment;

select (always), length(of-days)

listen (a perl poem)
Sharon Hopkins
rev. June 19, 1995

(Updated for Perl 5.8.1-RC3 by me)

12

Type System Power

Static semantics & dynamic typing:
Perl Poetry is syntactically valid
… but it’s semantically invalid

C/Java’s static typing sucks, revisited:
They suck because they have no power
Cannot express anything beyond int, float, struct, union

Parameterised types add power to static semantics
Core problem: type system not powerful enough
Power = expressiveness

13

On OO & Static Typing

Inheritance & Static Typing Don’t Mix:
Derived class can add a new method ‘foo’ to parent class
If you have a value of the parent class’s type, can you
invoke foo method on that value? Maybe, maybe not …
Safety dictates that you must choose ‘maybe not’

The Rise of Dynamic Typing
It’s an object-oriented world
Witness ease of coding in Python, Objective-C vs Java

What about C++ templates?
C++ templates used for STL
“STL is not object oriented” — Alex Stepanov

14

Type Systems Research

OO languages are stagnant w.r.t. type systems:
Type system inherently limited by inheritance

Functional languages:
Don’t have inheritance (but do have OO-like features, e.g.
type classes replace interfaces/dynamic binding/virtual
methods—with zero run-time overhead)
Where all the great type research has happened

15

All Praise Hindley-Mildner

Hindley-Mildner-Damas Type Inference:
No need to annotate values with types
Basis of modern functional languages (e.g. Haskell, ML)
Type system becomes an automated proof system
Functional languages go to great lengths to keep type
inference
Surprisingly often, if it’s compiles, it’s correct!
Mark Jason-Dominus’s “Strong Typing and Perl” talk: type
checking found an infinite loop bug in a merge sort!

16

Types for Correctness

Dependent types:
Parameterised types where the parameter can be a value
Lists of specific length
Matrices which are guaranteed to be square
Balanced trees enforced by type system
Prove that a program terminates

17

Types for Software Eng.

Advanced generics:
Not to be confused with Java/C#’s generics
Haskell/Perl has a map function, can be applied to lists:
map (* 2) [1..10]

What about map’ping hash tables? Trees? Any type?
Instantly add serialisation to all your new types
Similar to what is possible with Python/Objective-C/Java/
C# metaclasses/reflection, but zero run-time overhead

18

Types for Optimisation
Traditional optimisation

e.g. Starkiller for Python

Linear types
Compiler infers that a value is only used once
Enables in-place updates of data:
char *get_scheme (char *url) {
 char *s = strstr (url, “://”);
 return strndup (url, s - url);
}
void main (int argc, char **argv) {
 char *url_scheme = get_scheme (argv[1]);
 printf (”scheme is %s”, url_scheme);
}

19

Proof-Carrying Code
Enables fast, safe execution of untrusted code

Java can execute untrusted code in a ‘sandbox’ JVM
Proof-carrying code promises to do the same, but again
with no run-time overhead (well, not quite)

How?
Attach types as proof certificates to object code
Proof checker validates certificate (i.e. checks types)
Generating proof certificate is slow, but checking it is fast

Benefits
Guarantee a program will not delete your home directory
Device drivers that are guaranteed not to panic the kernel
Works even in the presence of a malicious compiler

20

Type Theory

21

On Objective-C
Get Mac OS X

… not for the pretty GUI!
To taste Objective-C and Cocoa programming
GNUstep is good, but not as polished
Read Apple’s “The Objective-C Programming Language”

Small example:
Use xine-lib media engine to create a media player
GNOME’s Totem: 27931 lines of C
xine-ui (the main xine player): 96791 lines of C
Cocoaxine on Mac OS X: 1436 lines of Objective-C
apfelXine (Mac xine front-end): 2653 lines of Objective-C
Build a media player/web browser in < 5 minutes!

22

Broaden Your Horizons

There’s lots of fantastic technology out there!
The Pragmatic Programmer recommends learning a new
programming language each year

Language recommendations
C: simplicity
Objective-C: C + simple object system + dynamic typing
Perl: integrated regular expressions
Python: Objective-C + no memory management

23

Broaden Your Horizons

More language recommendations:
C++: everything is possible, at the cost of complexity
O’Caml: introduction to functional programming
Haskell: introduction to type wizardry, correctness
Nemerle: OO + functional programming (type inference!)
Scheme/LISP: macros, subsume all these features and
integrate them well into the language

Message of the talk:
Don’t be blinded by your own programming language
community & advocacy

24

Links
Some opinions and rants …

What I think about language shootouts/benchmarks:
http://xrl.us/cada

On object-orientation in non-object-oriented languages:
http://xrl.us/cadb

Mark Jason-Dominus on language advocacy:
http://www.perl.com/pub/a/2000/12/advocacy.html

References
Steve Blackburn’s homepage (re garbage collection):
http://cs.anu.edu.au/~Steve.Blackburn/

“Programming Languages: Theory and Practice” — Bob
Harper (type systems, type safety)
http://www-2.cs.cmu.edu/~rwh/plbook/

25

Links
References …

“In the Spirit of C” (article on B → C → C++/Java)
http://www.artima.com/cppsource/spiritofc.html

“Modern C++ Design” by Alexei Alexandrescu: design
patterns enforced by C++ template wizardry
http://www.moderncppdesign.com/

“C++ Templates are Turing-Complete”
http://osl.iu.edu/~tveldhui/papers/2003/turing.pdf

Interview with Alex Stepanov (on STL and OO)
http://www.stlport.org/resources/StepanovUSA.html

Lambda the Ultimate—excellent programming languages
blog (bias toward functional languages, though)
http://www.lambda-the-ultimate.com/

